164

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL.. 36, NO. 2, FEBRUARY 1988

Waiting Times in Discrete-Time Cyclic-Service
Systems

ONNO J. BOXMA anp WIM P. GROENENDIJK

Abstract—This paper considers single-server, multiqueue systems with
cyclic service in discrete time. Nonzero switch-over times between
consecutive queues are assumed; the service strategies at the various
queues may differ. A decomposition for the amount of work in such
systems is obtained, leading to an exact expression for a weighted sum of
the mean waiting times at the various queues. The present paper is the
companion paper of Boxma and Groenendijk [1] where the continuous-
time case is treated.

1. INTRODUCTION

N local communication networks, a number of stations often

compete for the use of a common transmission medium.
Various polling schemes are employed to coordinate and
control the access to the communication channel. The per-
formance of such polling schemes can be analyzed by studying
single-server, multiqueue queueing systems. For example, ina
token ring local area network, the common transmission
channel may be represented by the single server, and the
workstations attached to the ring by the queues. The circula~
tion of the token along the ring implies that the stations are
polled in a cyclic order. The resulting single-server, multi-
queue system with cyclic service and switch-over times
between queues is the subject of the present paper.

The main performance measure of interest in polling
systems is the waiting time of messages at the stations.
Unfortunately, explicit analytical results for even mean waiting
times in cyclically served queueing systems are only available
in some exceptional cases. The recent discovery of so-called
pseudoconservation Ilaws (Watson [13], Ferguson and
Aminetzah [3]) is an important step forward. These laws are
exact expressions for weighted sums of the mean waiting
times. They can be readily used to obtain and/or test
approximations for the mean waiting times at the various
queues (cf. [2]). In [1], those pseudoconservation laws have
been generalized by allowing a mixture of different service
strategies at different queues. The proof of the resulting
unified pseudoconservation law is based on a stochastic
decomposition of the amount of work in the cyclic-service
system. This decomposition provides a generalization of
Kleinrock’s work conservation principle [5] to models with
switch-over times. The decomposition also allows a simple
probabilistic interpretation of the various terms of the unified
pseudoconservation law.

All above-mentioned results are for continuous-time sys-
tems. The main goal of the present paper is to obtain discrete-
time analogs of the results of [1]—thus solving a problem
posed by Takagi [12]. Our motivation is that discrete-time
arrival and service processes naturally fit the generally time-
synchronized configuration of practical communication net-
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works (while continuous-time cyclic-service results can be
easily obtained from their discrete-time counterparts). Dis-
crete-time polling systems have been studied before, cf.
Konheim and Meister [7], Swartz [10], Rubin and DeMoraes
[9], and Takagi [11], but the bulk of the literature in this area
is devoted to continuous-time systems. See Takagi [11] for an
extensive survey of cyclic-service systems, and Takagi [12]
for an update reflecting the rapid development and strong
interest in this area of research.

The organization of the rest of the paper is as follows. In
Section II, we consider cyclic-service systems without switch-
over times. For such systems the principle of work conserva-
tion clearly holds. This principle naturally leads to a discrete-
time version of Kleinrock’s conservation law for mean waiting
times. The extension of the work conservation principle to the
case with switch-over times is made in Section III. The main
result of the paper, the discrete-time pseudoconservation
law for mean waiting times, is proved in Section IV. In
Section V the relation between the obtained discrete-time
results and results for the continuous-time case is presented.
Section VI contains some concluding remarks and topics for
further research. We close this introductory section by
presenting a more detailed model description and some basic
results of general validity.

Model Description

We consider a discrete-time queueing system with N
stations (queues) Q,, **-, Oy where each station has an
infinite buffer capacity to store waiting messages (customers).
Each message consists of a number of packets, which are
assumed to be of fixed length. Time is slotted with slot size
equal to the transmission time of the data contained in a packet
(the service time of a packet). We shall call the time interval
[/, + 1] the jth slot.

Arrival Process

Let
X;(j) := number of messages arriving at station i
in the jth slot,
b; = number of packets included in a message

at station /.

The message arrival process at each station is assumed to be
independent of those at other stations. The stochastic processes
{xi(j)} and {b;} are assumed to be mutually independent. The
x(j), j = 1, 2, --- are assumed to be independent,
identically distributed random variables with z transform, first
and second moment

Alz) 1= E[z50], N 1= E[x()], NP 1= E[x2()].
(1.1)

No_te that we can view the arrival process at Q; as a Bernoulli
arrival process with batch arrivals

Ai(2) =A;(0) + [1 - A;(0)] Gi(z)
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with G(z) denoting the z transform of the size of a type i
batch.
Let

N N 2
Ni= YN, A= E [(E x,~(j)> ] . 1.2
i=1 i=1
The z transform, first and second moment of the number of
packets, b;, in a message at Q; are given by

Bi(z) := E[z%], B; := E[b], 8 := E[b2]. (1.3)
Further, introduce

u @ SN @
61" 6 = E I B i

1 i=1

Note that B{(0) = Pr {b; = 0} = 0 by definition. The offered

traffic at the ith station, p,, is defined as

z

B:= (1.4)

s
>

1

It

0i:= NBi, i=1,2, -+, N. (1.5)
The total offered traffic p is defined as
N
pi=> pi (1.6)

Service Strategy

We assume that a single server S visits the /V stations in the
order of their indexes i = 1, 2,- -, N (“‘cyclic service’”). For
the service strategies at the queues there are various possibili-
ties, which differ in the number of messages which may be
served in a queue during a visit of server S to that queue.
Assume that S visits Q;. When Q; is empty, S immediately
begins to switch to Q. (we disregard variants in which S does
not switch if none of the queues contains messages). Other-
wise, S acts as follows, depending on the service strategy at

Q.

1) Exhaustive service (E): S serves type / messages until Q;
is empty.

2) Gated service (G): S serves exactly those type i
messages present upon his arrival at Q; (a gate closes
upon his arrival).

3) 1-limited service (1-L): S serves one type i message (the
term nonexhaustive has often been used for this strategy;
in [1] we have accordingly used NE instead of 1L).

4) Semiexhaustive service (SE): S continues serving type i
messages until the number present is one less than the
number present upon his arrival.

In this paper, we will allow mixed cyclic-service strategies
(e.g., semiexhaustive at Q;, exhaustive at Q, and Q;, 1-limited
at Q;, and gated at Qs, - - -, On). The order of service within
each queue is first-come-first-served (FCFS). This assumption
is not essential. In the sequel, the system is assumed to be in
equilibrium.

Remark 1

Consideration of mixed service strategies will enable us to
prove results for various cyclic-service systems in a unified
manner. However, it is also of practical interest to study
mixed strategies. For example, according to the draft IEEE
802.6 recommendation of the committee on metropolitan area
networks, two or more token ring local area networks are to be
interconnected by a backbone ring through bridges. It is often
natural to assign a higher priority to the queues which
represent the bridges than to the other queues at the ring. The
service discipline at the ordinary queues usually is 1-limited,
but at the ‘‘bridge queues’’ one may consider another service
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discipline to model the preferential treatment received by these
queues.

Switching Process

A switch-over time is needed to switch from one station to
the next. The switch-over times of the server between the ith
and the (i + 1)th station (measured in slots) are independent,
identically distributed random variables with first moment s;
and second moment 5. The first moment s of the total switch-
over time during a cycle of the server is given by

N
s:= Esi
i=1

its second moment is given by s@.
Some additional notation we shall be needing is the
following:

1.7

X;: the number of type i messages in the system at an

arbitrary epoch;

the number of waiting type i messages in the system

at an arbitrary epoch;

W;:  waiting time of a type / message; the waiting time is
counted from the beginning of the slot following the
one in which the message arrived.

Remark 2

It should be noted that, as customary in discrete-time
queueing literature, an arbitrary epoch is supposed to be the
instant just after the beginning of a slot.

Below, we state a few general results for future reference.
For any strictly cyclic-service system, we can define the cycle
time C; for Q; as the time between two successive arrivals of S
at Q;. It is easily seen that the mean cycle time for Q;, EC;, is
independent of i; we will denote it by EC. The visit time V; of
S for Q; is the time between the arrival of S at Q; and his
subsequent departure from that queue. Balancing the flow of
type i messages in and out of the system during a cycle shows
that

p, EC=EV;. (1.8)
Summing over i, we obtain
N
pEC=E EV;=EC-s.
i=1
This yields
N
EC=—-— (1.9)
1-p
and hence, from (1.8) and (1.9)
iS
Ev,=2 (1.10)
l-p
The intervisit time I; for Q; is defined as
I,'Z= C,""V,'. (1.11)

Now some remarks about the conditions for ergodicity of
these cyclic-service systems are in order. Clearly, p < 1 isa
necessary condition. For exhaustive and gated service, this
condition is also sufficient. For a queue Q; with 1-limited
service, it can be seen that

(1.12)

is an additional condition for the ergodicity of the cyclic-
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service system: indeed. the mean number of type i arrivals
during a cycle should be less than one. Note that it is possible
that, even if (), i1s unstable, some of the other queues are
stable.

Similarly, for a queue @, with semicxhaustive service, we
have the following additional condition:

ns(l—
}\éE[‘.:;,M< 1.
I-p
This reflects the fact that, for semiexhaustive service, the
mean number of type i arrivals during the intervisit time
should be less than one, for during visit times the number of
type § messages is at most reduced by one.
For the mixed strategies that we allow, the conditions (1.12)
and (1.13) should be added to the stability condition p < 1 for
those queues at which we have a 1L or SE strategy.

(1.13)

II. CONSERVATION LAW FOR THE DISCRETE-TIME M/G/1
MODEL

In this section, the switch-over times are taken to be zero;
hence, the server works whenever there is work in the system,
and is idle when there is no work in the system. Therefore, the
principle of work conservation holds: the total amount of work
V. in the cyclic-service system does not depend on the order of
service, and should hence equal the amount of work in a
**corresponding’’ FCFS M/G/ 1 queueing system. This obser-
vation will allow us to derive a conservation law for mean
waiting times in the cyclic-service system without switch-over
times. We first introduce the notion of the ““orrespondmg
M/G/1 queueing model. This is a discrete-time queueing
model, consisting of one queue and one server with a Bernoulli
(Memoryless = M ) arrival process with batch arrivals. The
arrival process is constructed as follows: the arrival streams at
all V queues of the cyclic-service model are aggregated into a
single arrival stream. The batch of all the messages arriving in
a slot is called a train. In any slot, no train arrives with
probability IT¥ A4,0) and a train does arrive with probability 1
— IIY A40). An arbitrarily chosen message in this train poses
a servnce request whose £ transform is the mixture = (\;/
A)Bi(z2).

The principle of work conservation now states that V.
equals the amount of work in the corresponding M/G/1
system, V1. Therefore, ¥V, also equals V). in distribution

V.2 Vion. 2.1)

According to Kobayashi and Konheim [6], the mean number
of messages in the corresponding system at an arbitrary epoch
is given by

NBD (A=A -M)B
EXyven= + +p.
2(1-p) 2(1-p)

Note that the second term in the right-hand side disappears
when the arrival process is Poisson. The mean number of
messages in service is p: the residual service time of the
message in service is 3%/28 + 1/2. Hence,

NCHED DY
( )3] 8

2(1-p)
3(2) 1
Remark 3

It should be observed that in the renewal process in discrete
time with interevent-time distribution with first moment 8 and
second moment 8%, 33/28 + 1/2 is the mean residual life
time and 8%/28 — 1/2 is the mean past life time.

2.2)

A2
+
2(1-p)

EVyen= [
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On the other hand, we can write E¥, as (cf. the definitions
EV.= 2 ﬁ,EX“-%—E Di

above Remark 2)
6“+1
“ 26,2

B8P
'Ep‘EWJrE"‘ [ZB, 5] '

The second equality is based on Little’s formula.

From (2.1), (2.3), and (2.4), we obtain the following
expression for a weighted sum of the mean message waiting
times

(2.4)

(A®=\2=))8

)\ﬁm
E niE 2A(1-p)

l
vt p)

@2.5)

We propose to call (2.5) the M/G/1 conservation law in
discrete time. We have found no references to this relation in
the literature, although it seems highly likely that it has been
derived before.

III. A STOCHASTIC DECOMPOSITION RESULT

In the sequel, switch-over times are incorporated in the
systems under consideration. Because now the server may be
idle (switching) although there is work in the system,
Kleinrock’s principle of work conservation is no longer valid.
However, Theorem 1 below presents a natural modification of
this work conservation principle. In the theorem, an arbitrary
epoch is considered to be “‘in’’ a switching interval if it marks
the beginning of a switching slot; the ‘‘corresponding”
M/G/1 system is the system (without switch-over times)
introduced in the preceding section.

Theorem 1

Consider a single-server cyclic-service system with mixed
service strategies as described in Section I. Suppose the system
is ergodic and stationary. Then the amount of work ¥, in this
system at an arbitrary epoch is distributed as the sum of the
amount of work Vg in the “‘corresponding’” M/G/1
system at an arbitrary epoch and the amount of work Y in the
cyclic-service system at an arbitrary epoch in a switching
interval. In other words,

Ve 2 Viyon+ Y 3.1

where 2 stands for equality in distribution. Furthermore,
V6 and Y are independent. '

Proof: The proof is similar to that of Theorem 1 in [1]
for the continuous-time case, apart from the fact that frains are
considered instead of customers. It is based on the following
observations:

1) Vayci1 is not affected when the service discipline is
LCFS nonpreemptive instead of FCFS.

2) V. is also not affected when, instead of cyclic service,
the following service strategy is enforced: all arriving trains
are served LCFS, but service is interrupted precisely during
the switch-over periods of the cyclic-service system.

3) It now suffices to prove that, in distribution, VLCFS =
VLCES 4+ Y. The validity of this decomposition is a
consequence of the LCFS discipline. Consider a train T that
arrives during a switch-over period. It has to wait until trains
that arrived after 7, in the same switch-over period, have been
served (and also trains arriving during their service, etc.).
When, finally, T is taken into service, the only work present is
the work that 7" found upon his arrival. This latter quantity is
distributed like ¥. Here, we use a discrete-time equivalent of
the PASTA property [14], which we should like to call the
BASTA property (Bernoulli arrivals see time averages);
because the input of trains to the system is Bernoulli (and due
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to the memoryless property of the underlying geometric
distribution), the distribution of the amount of work at an
arbitrary epoch is equal to the distribution of the amount of
work immediately before an arrival epoch of a train. T
initiates a busy period, which evolves exactly like a busy
period in the “‘corresponding’” M/G/1 system. So during the
busy period initiated by 7', the amount of work present in the
system is distributed as the sum of ¥ and the amount of work
during a busy period of the M/ G/1 system. We refer to [1] for
details.

Remark 4

Theorem 1 is the discrete-time analog of Theorem 1 of [1].
The latter theorem was motivated by, and its proof uses
arguments suggested by, Fuhrmann and Cooper [4].

However, the reasoning in [4] is held for customers at
departure epochs instead of work at arbitrary epochs. In [4],
this leads to a similar decomposition as [1, Theorem 1] and
(3.1), for queue lengths, for a class of so-called vacation
systems. For our purposes, the amount of unfinished work is
the natural quantity. Decomposition (3.1) holds for this
quantity under very general assumptions (the restriction to
cyclic service can in fact be relaxed). In the next section,
decomposition (3.1) will be exploited to obtain a relation
between the mean waiting times at the various queues of the
cyclic-service system.

Remark 5

In Levy and Kleinrock [8], Y represents ‘‘the additional
delay due to the presence of the starter.”’

IV. THE PSEUDOCONSERVATION LAW
As a consequence of Theorem 1

EVC=EVM/G/1+EY 4.1)
and hence, cf. (2.3) and (2.4),
N AB® A N2\
E p,-E i= 6 ( )6 p+EY. (42)
~ 21-p) "7 2M1-p)

We now derive an expression for E'Y, thus obtaining a very
general pseudoconservation law for the weighted sum of the
mean waiting times at the various queues. Let E'Y; denote the
amount of work in the cyclic-service system at an arbitrary
switching epoch during a switch-over from Q; to Q.
Obvxously, EY = 2 ", (si/S)EY;. As in the continuous-time
case, EY; is composed of three terms:

1) EME‘): the mean amount of work in Q; at a departure
epoch of the server from Q;.

2) EM®: the mean amount of work in the rest of the system
at a departure epoch of S from Q;.

3) p{s®/2s; — 1/2}: the amount of work that arrived in
the system during the past part of the switching interval under
consideration (cf. also Remark 3).

Again, as in the continuous-time case, we have

2 ; M(Z)_ EE ShSk+ 7 22 PrPk

i=1 h<k h<k

2 EEM‘” 4.3)

i= j#l

z

and hence for EY

EY s® 1 < i > ﬁ]:EM(I)
= —_——— ) — p + P
”<2s 2> 2(1—p) &P )T e

Jj=1
4.4)
The first term in the right-hand side of (4.4) represents the
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mean amount of work that arrived at all queues during the
switching intervals after the last visit of the server to those
queues. Note that s»/2s — 1/2 represents the mean total past
switching time from the departure of the server from an
arbitrary queue to the present random switching epoch. This
interpretation explains why only s and s® occur, and no
moments of individual switch-over times. The second term
reflects the interaction between queues; it represents the mean
amount of work that arrived at queues, after the last visit of S,
during the subsequent service periods of other queues. Its most
natural representation is perhaps [cf.(1.10)]

3 22 PxEV).

h#k

Finally, Y EM) represents the mean amount of work that
arrived at queues during the last service penods of those
queues, but that was not handled by S at those service periods.
From (4.2) and (4.4)

i . AB®
piEW;= p+
i=1 2(1—/))

AD-N2-\)B 5O 1
ptp———=p

2N - p) 2s 2

S N N
+—— | p2— p§>+ EM®Y. (4.5)
2(1—p)< E E ‘

Note that the form of formula (4.5) is still independent of the
service strategies at the various queues; only the EM depend
on the choice of service strategies.

The EM" are readily found for an exhaustive or gated
strategy at Qy
Q; exhaustive:

EM"=0.
O: gated [cf.(1.10)]:

(4.6)

EM® = p,EV,=p? —S——
! 1-

For the 1-limited strategy somewhat more work is required.
At a departure epoch of S from Q;, S has just completed one
service of a message with probability N;s/(1 — p), and no
service with probability 1 — N;s/(1 — p). Hence, with ET; the
amount of work left behind at a departure epoch of a type i
message

4.7

EM“>——)1—
l-p
To determine ET;, we calculate the mean number of packets
left behind by a departing type i message. Let Wi(z) be the z
transform for the waiting time of an arbitrarily chosen type i
message (the tagged message); EW; = W;{U(1). Note that the
messages left behind at station Q; when the service of the
tagged message has been completed are those which arrived
during the sojourn time of the tagged message, and those
which arrived in the same slot as the tagged message but were
placed behind the tagged message (the sojourn time is counted
from the beginning of the slot next to the one in which the
arrival took place). The z transform Qj(z) for the number of
messages who arrived during the sojourn time of the tagged
message is given by

Qi(z) = Wi(Ai(2)) Bi(Ai(2))- 4.9)

Oi(z), the z transform for the number of messages which
arrived in the same slot as the tagged message, but were placed
behind the tagged message, is given by the backward

ET,. (4.8)
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recurrence time transform

(4.10)

These numbers of messages are not independent, but we can
still determine the first moment of the sum, i.e.,

Q" (D+ 0" 4.11)
where
QM =MEW,+8) (4.12)
oM (1) =—— it (4.13)
2\

And so ET,, the mean amount of work left behind in Q; at a
departure epoch of a type i message, equals

ISR
Ti=pEW + p; B3 4.14
ET;=p 0iBi+ 7 4.14)
From (4.8) and (4.14), we obtain the following.
For Q, 1-limited,
@

NS s P AN
EM“’-—’- EW,+p? 4.15
1—p " T, oy @Y

Finally, we consider semiexhaustive service. With the
above definition of ET;, (4.14) again holds. Denote by U, the
number of messages in Q; at an arrival epoch of S at Q;. Due to
the structure of the SE strategy, we can also write

A2
2(1-py)
AD-N-N)B; NP

-+ p,‘+
2(1-p) 2N

Note that the second term in the right-hand side represents the
amount of work left behind by a departing message in a
liscrete-time M/G/1 queue with A(z) and B{z), respectively,
he z transform of the number of message arrivals per slot and
the number of packets per message; the first three terms
between square brackets represent the mean number of
messages that have arrived during the sojourn time of the
departing message (cf. (2.2) and Little’s formula), and the
fourth term is the mean number of messages that have arrived
in the same slot as this message, but were placed behind it, cf.
(4.13). Subsequently, express EM! in the first term in the
right-hand side of (4.16)

EM® =

ET,=BE[U~-1|U; 2 ”"’[

] Bi. (4.16)

B:E [max (0, U;-1)]

=BEU~1{U; 2 11 Pr {U; > 1}. (4.17)
Because the mean visit time of S at Q; during a cycle, when
positive, equals 8/(1 — p) (the mean busy period of a
discrete-time M/G/1 system with mean number of arrivals
per slot \; and mean number of packets per message 3;), we
have

i§
EV,=—=Pr {U; > > 1y P

(4.18)
- p 1—-p;

s0
)
—-p :

Pri{lU > 1}= (4.19)
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Combining (4.14), (4.16), (4.17), and (4.19),

EMU‘
P EW,+p,Bi=——
)\S*—-*&
l-p
)\?Bm M”—)&—-k,-
+| ot it o | Bi. (4.20)
[2(1‘"191') 2N(1—p;) ]
And so we have
Ss(1—p; )\[S 1- i
EM(‘”=pi )\,S( p,) Eu'/"____(__e_z
' 1-p 1-p
NBY AP =N=-N) ]
. ! i+ PiBi . (4.21)
[2(1—,0,-)” 2N(1—p1)

Combining (4.5) and the four expressions for EM{® in the
cases of E, G, 1L and SE service strategy at Q;, respectively,
we have proved our main result.

Theorem 2

Consider an ergodic cyclic-service system with one server
and mixed service strategies as described in Section I. Denote
by

e: the group of E(xhaustive) queues,

g: the group of G(ated) queues,

1/:  the group of 1L (imited) queues, and

se: the group of S(emi) E(xhaustive) queues.

Then,
A
[1——5] EW,
l-p

)\,‘ 1- i
[1__5_(___’.’_2] EW,
l-p
s@

()\(2)_.)\2_>\)B N
2n1-p) 7P 725

3]

N
- N2BDp,
0o 2 P TR 2 NEe

i€g,1l iEse

2 PiEWi'*‘E o EW;+ 2 pi

i€e icg et
+3 a
i€se

}\B(z)
= p+
2(1-p)

1
R 2(1—p)

(2) _
S )\,‘

oo 2 o

iell

Pi

> NP =N=N)Bipi. (4.22)

i€se

2(1—p)

Remark 6

The case of N = 1 queue yields expressions for mean
waiting times in discrete-time M/G/1 queues with some form
of server vacations. In the completely symmetric case with all
queues having identical characteristics and the same exhaus-
tive (gated, 1-limited) service strategy, formula (4.22) reduces
to formula (3.63b) [respectively, (5.23), (6.60)] of [11].

Remark 7

If we assume Poisson arrivals in (4.22) (and hence take A\
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= A} + \), we obtain the following relation for the weighted
sum of the mean waiting times.
AiS
E p,EW+2 o EW;+ 2 oi |1-——— | EW,
i€e i€g i€l 1 —-p
Ns(1—p;)
O P
i€se 1 P

AB®
=———p+p——=p+
20-p) " 25 2P0
S, p?

. 2 __ 2
[p ; p’] (1 _p) i€g,ll

> BP0+

i€se

s@ 1 s

E Nipj.

i€ll

(4.23)

B
2(1-p) 2(1-p)

V. RELATION TO THE CONTINUOUS-TIME CASE

In the present paper, we have expressed all quantities
involved, including waiting times, in slots with the slot length
equal to the time unit. If, instead, we assume a slot to be of
length A we are able, by taking the limit A — 0, to pass the
results over to continuous time.

First, we express the arrival process in messages per time
unit. Recall that the z transform of the number of message
arrivals at Q; in a slot is given by A4;(z), with first and second
moment \; and A\®, respectively. Denote by A;(z) the number
of message arrivals at Q; per time unit. Then

Ai(z)=[A(=)]"* (5.1
(1/A is the number of slots per time unit). From (5.1), we find

AN
NO=_ 4 <—— l) A2,
! A A\A !

For the service (switching) process let 8;, BP(3;, §?) denote
the first and second moment, respectively, of the service
(switching) time expressed in time units. It may be easily seen
that

N
=7 (5.2)

Gi=Ba,  FP=B7a%
§i=siA, §P =P A2, (5.3)
Similarly, cf. (1.2), (1.4),
= i X,-:f, A = X2+§ ONGED ) N )
i=1 A i=1
hence,
)”\<2>—>”\2—>'\=l (N@=N2=));
A
furthermore,
B:= i&g:&\ @ . 2 : 5(2)_.3(2)Az
AXT T A
(5.5)
For the mean waiting time in time units £ W, we have
EW,=EWA. (5.6)

Of course p; = NB; = X;8;. We can now express (4.22) in
time units. With the slot length equal to A, we obtain from
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(4.22) and (5.2)-(5.6):

1 1 NS
PiEW; —+3, piEW;—+ 3 p; [1—4—]
E A E A igl I-p

[1 NS(1—p;
I-p

_XB@ 1(X<2>—X2—X)6" 1
p._

“21-p)° 281 ~-p) A

§@1 1 § 1
Lol [Z—Ep,%]z

258 27 20-p) -~

§ - 1
E N2BPp; 3

i€Ese

-1
EW,z+2 pi

i€Ese

1€gll

s X@—(-a)KR-
+ S -
(1-0), 2%,

iell

1
PiZ

> RP-X2- X)B,p. (5.7

2(1 ~p) iEse

In (5.7), we can take the limit for A — 0 by multiplying the
left- and right-hand side with A and substituting A = 0. If we
E p:EW"'E p,EW—f—E Pi

do so, we obtain
NS
1—— EW
i€e icg i€l 1-p

7\,'5(1”'»0:') =~
+3 i | 1-——— | EW;
2 [ I-p ]

i€se

N (RO -X2-N)F 5@
BIEDN = TP

e [ 2"%”?]

+(:p) ,531,”?‘2(1ip) GE N8P s
+afm,g, x: "

20— p),ge(m Ki=R)Bipi. .8)

At this point, some remarks are in order. To obtain formula
(5.8), it is not necessary to specify precisely how the above
limit A — O is taken. However, the structure of the resulting
arrival process does depend on it. Let us take a closer look at
the arrival process. As has been noted in Section I, the
message arrival process at Q; is a Bernoulli process with batch
arrivals. We have a Bernoulli arrival process in the sense that

Pr{ type i batch arrives in a slot } =1—4,(0)
Pr{ type i batch does not arrive in a slot } = A4,(0).

With respect to the batch arrivals, let Gi(z) denote the z
transform of the size of a type I batch. Then, we can write
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ALZ) as
A =A0)+]1 - A0)]G(2) (5.9
and hence, with {5.1):
A(D=(A,0)+[1 - AO]G N
1-A,0) 1-4,0 \ LA
=<1‘[ 0 ()G,(:)]A) .
A A ‘
(5.10)
Let
1-A(0)
Vi =

A

+v: denotes the arrival intensity of type i batches. Note that v, is
also equal to X,/G'(1). Now, if in (5.10) we let A = 0 in such
a way that +,; remains constant, the g transform for the number
of message arrivals per time unit at Q; becomes

A(z)=etGia-1 (5.11)

which is the z transform of a compound Poisson process. If we
take G,(z) = z (single arrivals), we obtain the 7 transform of
the “*ordinary’” Poisson process; in this case )\‘~’ = >\- + N
and (5.8) reduces to the pseudoconservation law in continuous
time, formula (3.22), derived in [1]:

i€e i€g el

NS _
[1~-S—] EW,
1-p
231 pi .
+S o AUz | g
l-p
i€se

5'\ 32
8 = p?]

s"’ § [
S pt+p
2(1~p) 2§ 2(1 -p) -~

- K280,
2 o 2(1—p),§,, B

i€g 1

E P:'EW;“FE o EW,+ E pi

S.12
(1"10) (5.12)

Formula (5.8) presents a slight extension to this result, in that
the message arrival process at Q; is allowed to be a Poisson
process with batch arrivals.

VI. DisCUSSION

In this paper, we have derived a stochastic decomposition
for the amount of work in discrete-time cyclic-service systems
with mixed service strategies. This decomposition is analo-
gous to one that has recently been proved in [1] for the
continuous-time case. The work decomposition result is used
to derive an exact expression for a weighted sum of mean
waiting times—a so-called *‘pseudoconservation law.”” This
pseudoconservation law, stated in Theorem 2, forms a natural
extension of the M/G/1 conservation law in discrete time as
stated in formula (2.5). Its derivation clearly exposes the
meaning of all terms. Theorem 2 presents a remarkably simple
result, in view of the fact that expressions for the individual
mean waiting times (in continuous- or discrete-time) are in
general either not known or very complicated.

In [2], it has been shown, for the I-limited case, how
pseudoconservation laws can be used to obtain simple, yet
quite accurate, approximations for individual mean waiting
times. In a future report, this approximation will be extended
to more general cyclic-service models with mixed service
strategies.

Finally, we should like to stress the fact that Theorem 1 and
decomposition (4.5) can be proved for more general models
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than the one under consideration. In particular, other service
strategies may also be included—and for each extension the

challenge is to determine T

, EM", the sum of the mean

amounts of work left behind by the server in the queues.

{t]

41

(5]
[6]

n
(81

{9

[10]
(1
[12]

{13

[14]
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